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The Use of Resonance for the Dynamic Stabilization

of the Raylsigh-Taylor Instability and for the Excitation
of the Related Parametric Instabilities

H. Holitzner and G.H. Wolf
ABSTRACT

The dynamic stabilization of the hydrostatic Rayleigh=-Taylor
instability and the excitation of the related short wavelength
parametric instabilities (resonances) require the application
of enforced oscillations vertically to the unstable inter-
face. The use of the resonance between the frequency of these
oscillations and the appropriately chosen eigenfrequency of the
overall system allows operation in regions of the stability
regime which are difficult to reach otherwise. AR air cushion
between the body of liquid and the vibrator which delivers the
enforced oscillations can be used as the spring determining

this eigenfrequency instead of the familiar mechanical elements.
INTRODUCTION

The dynamic stabilization of the Rayleigh-Taylor1 instability
of a liquid-gas interface can be achieved by oscillating the
body of liquid vertically, i.e. in a direction essentially
perpendicular to this interfacezua.'Far a cylindrical container
of diameter D, the maximum instantaneous acceleration
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The symbole in these equations are: w = oscillation frequency,

a = maximum instantaneous oscillation amplitude, g = acceleration
of gravity, and N = viscosity in poises (for D and g in cgs units).
An extended theoretical analysis on this subjact5 (i) has shown
that there exists also a condition on the minimum value of the
surface tension lying below that of common liquids and (ii) has
given a more rigorous numerical value for the upper stability
boundary which is expressed here by the right-hand side of eq. (2).
These theorstical results were found to agree with a detailed
experimental invaatigation6 varying both viscosity and surface

tension.

Eq. (2) shows that for the purpose of increasing the diameter D
beyond the order of one centimeter and/or regucing the viscosity
below the order of one Poisse, the valuss of Eﬂ to be applied for
dynamic stabilization have to be extended into the regime between
102 and 103. This is outside the performance of conventional
vibrators at their platform. Therefore, in the present paper, we
are describing a method for applying values of %ﬂ to the body of
liquid which overcome those performed by usual vibrators and which
are then limited by the external gas pressure providing equilibrium
against the hydrodynamic pressure. For this consideration the
quality of the approximation as expressed by the right-hand side

of eq. (2) is satisfactory.
RESONANCE METHOD

The basic idea of this method is to couple the body of liquid to

the vibrator by means of an elastic link acting as a spring. When
adjusting the resulting eigenfrequency, “’o’ of the system to the
required operational fregquency w of the vibrator determined from

eq. (2), the resonance between & and uJD can be used to obtain
values of the oscillatory acceleration, bm, at the liquid gas inter-
face which largely exceed those of bu' which is the maximum
acceleration at the vibrator platform. For this case the oscillation

amplituds a of the liquid gas interface is
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There ag is the maximum instantaneous oscillation amplitude at
the vibrator platform and M is the mass of the liquid (including
its container in cases where the container is also coupled to the
spring); k is the coefficient of the friction term. The eigen-

frequency W of the undamped system is determined by the spring

constant s and by M

s
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Since bm = a w and bo =a w’, eq. (3) can be modified to
yield
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The maximum value of bm/b0 is obtained for the case w Wy
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Among the particular schemes which may be used for a practical
application of this method, (i.e. to achieve large values of

bm/bD according to eg. (6)) we shall not discuss here the obvious
solution of an appropriate mechanical spring (e.g. made of rubber
or steel) upon which the vessel containing the liquid is mounted,
although such an arrangement certainly serves the desired purposes.
Instead, we consider a layer of gas being located inside the vessel
between its bottom and the body of liquid as shown in Fig. 1. As

a consequence of the oscillatory motion the liquid assumes also a
plane, dynamically stabilized surface towards this layer of gas

which acts like a planar air cushion. According to Fig. 1 the thick-




ness of this air cushion is 1 while the depth of the (cylindrical)
body of liquid is d; note that for eg. (2) to be valid it was
assumed d > D, otherwise the formula for the lowest possible
eigenfrequency, JSL o’ of the liquid surface waves governing the

right-hand side of eq. (2) has to be modified.

Evaluating the eigenfreguency “Jo of the system consisting of the
gas cushion and the body of liquid, we assume that the value of
w , is large enough for the gas to be compressed or expanded

adiabatically. Then one obtains far the spring constant s

ﬂ'Dz ¥ P
8 = 4 1 (7)
where Y is the adiabatis exponent of the gas, Py its
static pressure and L E the area of the liquid surface.

The mass M of the body of liquid ig
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where ¥ is the mass density of the liquid. Inserting
eqs. (7) and (B) into eq. (4) yields

Uu" ?dl (9)

In order to obtain an estimate of the average of the coefficient
k to be inserted in eqs (3), (5) and (6), we shall make the rough
assumption that at any moment the axial motion of the liquid doss
not deviate too much from a viscous flow as described by the

relation of Hagen—PnisauilleT. From that it follows that

k = 8 'ﬂ"V(d. (10)
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For the factor 5 28 expressed by eq. (6) one obtains then
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Finally, in order to obtain an estimate of the values bm/b0
also in the regions outside the resonance uJashJu, the

egs. (7), (8), (9) and (10) have to be inserted into eq. (5).
This yields
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Before reporting on a comparison of these estimates with
experiments let us inspect the limits of the discussed method.

For this purpose we use the relation2
Mo = 0-05 p/4 (13)

for describing a minimum critical ualuef'rlc which can be

derived from eqg. (2). Taking for the vessel diameter D = 3 cm,

the value of 4\0 assumes about 0,25 poise as the minimum viscosity
to be inserted in eg. (11). Furthermore we choose §= 1 g/cms,

d =3 cm, 1 = 0.1 cm, X = 1.4, and Py = 106 Dyn/cm2 (1 atmosphere).

1
bo 3
This yields for — a factor of about 107.
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EXPERIMENTAL RESULTS

The experiments where this effect was first observed were carried
out by means of a vibrator built as a demonstration modelB for
dynamic stabilization. This vibrator was also used for obtaining

the results described here. While usually the arrangement as shown
in Fig. 1 was studied, for testing eg. (12) quantitatively it turned

out to be easier to use a position where the open side of thse vessel




pointed upwards - quite as it normally does when a liquid is
contained in a cup. By contrast to the everyday situation,
however, air was blown carefully at the bottom of the cylindri-
cal vessel from outside by means of a small tube crossing the
body of liquid. The air cushion so building up required a steady
adjustment of the oscillation parameters in order to maintain
always the stabilization condition of the interface between the

liquid and the air cushion.

The liquid used was mineral oil with a viscosity of about 2 poises,
typical geometric parameters were: d = 2 cmy, 1 =0,2cm, D = 1,95 cm.
For these a plot of the experimental results is shown in Fig. 2.

The acceleration bu/g quoted there was measured by means of an
acceleration probe which had to be calibrated by stabilization
experiments without an air cushion. As can be seen in Fig. 2,

good agreement was found betwsen the measured values and the

drawn curve representing eq. (12). The slight deviations at the
point of resonance are mainly attributed to the model used for

estimating the damping.
APPLICATIONS

with respect to practical applications of the effects connected
with the dynamic stabilization of the Rayleigh-Taylor instability,
the method described here obviously extends the achievable para-
meter range. Moreover, the resonant character of the hm/bn curve
allows the mass M of the oscillated material to influence the
value of b.» as follows from egs. (5) and (12). This leads to the
interesting result that, for instance, a system can be so adjusted
that the amount of liquid in an inverted container does not exceed
a certain upper limit; i.e. the growing total mass M causes the
value of bm/g to increase until the upper stability boundary
(right-hand side of eq. (2)) is surpassed and the resulting "rain
effect" stabilizes the value of M at a maximum level mm. This means

that without changing the parameters of the oscillatory circuit




(i.e. b, and W), the quantity of fluid which is "rained
down" depends solely on the quantity of fluid refilled into
the inverted container, e.g. by means of pumps and pipes.
The application of this effect requires, of course, that
another type of spring has to be used than the air cushion
described here, since otherwise the parametric instabilitises
causing the "rain" are also excited in the interface bstween

the liquid and the air cushion.
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FIGURE CAPTIONS
Fig. 1 Schematic arrangement of the resonance system. The
upper layer of gas with thickness L acts as the
spring determining the eigenfrequency of the oscillatory
system.
Fig. 2 Comparison of experimental results with an air cushion
as a spring and the theoretical model according to eq. {12 ),
The experimental parameters were: d = 2,0 cm; 1 = 0,2 cm;
D = 1,95 cm; P, = 108 dyn/cng § = 1 g/cmz; n.” 2 poises.
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Schematic arrangement of the resonance system. The upper layer of
gas with thickness L acts as the spring determining the eigenfrequency
of the oscillatory system.
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